Strategic Play By Resource-Bounded Agents in Security Games

07/25/2023
by   Xinming Liu, et al.
0

Many studies have shown that humans are "predictably irrational": they do not act in a fully rational way, but their deviations from rational behavior are quite systematic. Our goal is to see the extent to which we can explain and justify these deviations as the outcome of rational but resource-bounded agents doing as well as they can, given their limitations. We focus on the well-studied ranger-poacher game, where rangers are trying to protect a number of sites from poaching. We capture the computational limitations by modeling the poacher and the ranger as probabilistic finite automata (PFAs). We show that, with sufficiently large memory, PFAs learn to play the Nash equilibrium (NE) strategies of the game and achieve the NE utility. However, if we restrict the memory, we get more "human-like" behaviors, such as probability matching (i.e., visiting sites in proportion to the probability of a rhino being there), and avoiding sites where there was a bad outcome (e.g., the poacher was caught by the ranger), that we also observed in experiments conducted on Amazon Mechanical Turk. Interestingly, we find that adding human-like behaviors such as probability matching and overweighting significant events (like getting caught) actually improves performance, showing that this seemingly irrational behavior can be quite rational.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset