Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function

02/14/2020 ∙ by Lingkai Kong, et al. ∙ 13

This article suggests that deterministic Gradient Descent, which does not use any stochastic gradient approximation, can still exhibit stochastic behaviors. In particular, it shows that if the objective function exhibit multiscale behaviors, then in a large learning rate regime which only resolves the macroscopic but not the microscopic details of the objective, the deterministic GD dynamics can become chaotic and convergent not to a local minimizer but to a statistical distribution. A sufficient condition is also established for approximating this long-time statistical limit by a rescaled Gibbs distribution. Both theoretical and numerical demonstrations are provided, and the theoretical part relies on the construction of a stochastic map that uses bounded noise (as opposed to discretized diffusions).



There are no comments yet.


page 31

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.