Stochastic Pooling for Regularization of Deep Convolutional Neural Networks
We introduce a simple and effective method for regularizing large convolutional neural networks. We replace the conventional deterministic pooling operations with a stochastic procedure, randomly picking the activation within each pooling region according to a multinomial distribution, given by the activities within the pooling region. The approach is hyper-parameter free and can be combined with other regularization approaches, such as dropout and data augmentation. We achieve state-of-the-art performance on four image datasets, relative to other approaches that do not utilize data augmentation.
READ FULL TEXT