Stochastic parareal: an application of probabilistic methods to time-parallelisation

06/18/2021
by   Kamran Pentland, et al.
0

Parareal is a well-studied algorithm for numerically integrating systems of time-dependent differential equations by parallelising the temporal domain. Given approximate initial values at each temporal sub-interval, the algorithm locates a solution in a fixed number of iterations using a predictor-corrector, stopping once a tolerance is met. This iterative process combines solutions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical integrators. In this paper, we introduce a stochastic parareal algorithm with the aim of accelerating the convergence of the deterministic parareal algorithm. Instead of providing the predictor-corrector with a deterministically located set of initial values, the stochastic algorithm samples initial values from dynamically varying probability distributions in each temporal sub-interval. All samples are then propagated by the numerical method in parallel. The initial values yielding the most continuous (smoothest) trajectory across consecutive sub-intervals are chosen as the new, more accurate, set of initial values. These values are fed into the predictor-corrector, converging in fewer iterations than the deterministic algorithm with a given probability. The performance of the stochastic algorithm, implemented using various probability distributions, is illustrated on systems of ordinary differential equations. When the number of sampled initial values is large enough, we show that stochastic parareal converges almost certainly in fewer iterations than the deterministic algorithm while maintaining solution accuracy. Additionally, it is shown that the expected value of the convergence rate decreases with increasing numbers of samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset