Stochastic Matrix Factorization

09/19/2016
by   Christopher Adams, et al.
0

This paper considers a restriction to non-negative matrix factorization in which at least one matrix factor is stochastic. That is, the elements of the matrix factors are non-negative and the columns of one matrix factor sum to 1. This restriction includes topic models, a popular method for analyzing unstructured data. It also includes a method for storing and finding pictures. The paper presents necessary and sufficient conditions on the observed data such that the factorization is unique. In addition, the paper characterizes natural bounds on the parameters for any observed data and presents a consistent least squares estimator. The results are illustrated using a topic model analysis of PhD abstracts in economics and the problem of storing and retrieving a set of pictures of faces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro