Stochastic Geometry-Based Modeling and Analysis of Beam Management in 5G

06/09/2020
by   Sanket S. Kalamkar, et al.
0

Beam management is central in the operation of dense 5G cellular networks. Focusing the energy radiated to mobile terminals (MTs) by increasing the number of beams per cell increases signal power and decreases interference, and has hence the potential to bring major improvements on area spectral efficiency (ASE). This benefit, however, comes with unavoidable overheads that increase with the number of beams and the MT speed. This paper proposes a first system-level stochastic geometry model encompassing major aspects of the beam management problem: frequencies, antennas, and propagation; physical layer, wireless links, and coding; network geometry, interference, and resource sharing; sensing, signaling, and mobility management. This model leads to a simple analytical expression for the effective ASE that the typical user gets in this context. This in turn allows one to find, for a wide variety of 5G network scenarios including millimeter wave (mmWave) and sub-6 GHz, the number of beams per cell that offers the best global trade-off between these benefits and costs. We finally provide numerical results that discuss the effects of different systemic trade-offs and performances of mmWave and sub-6 GHz 5G deployments.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
12/06/2020

Beam Management in 5G: A Stochastic Geometry Analysis

Beam management is central in the operation of beamformed wireless cellu...
research
12/14/2019

Stochastic Modeling of Beam Management in mmWave Vehicular Networks

Mobility management is a major challenge for the wide-spread deployment ...
research
04/05/2018

A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies

The millimeter wave (mmWave) frequencies offer the availability of huge ...
research
05/21/2020

Escaping the Densification Plateau in Cellular Networks Through mmWave Beamforming

We study how dense multi-antenna millimeter wave (mmWave) cellular netwo...
research
10/04/2022

Beam Management in Ultra-dense mmWave Network via Federated Reinforcement Learning: An Intelligent and Secure Approach

Deploying ultra-dense networks that operate on millimeter wave (mmWave) ...
research
12/04/2022

An ISAC-based Beam Alignment Approach for Enhancing Terahertz Network Coverage

Terahertz (THz) communication can provide high-capacity data transmissio...
research
12/23/2021

Sub-Chain Beam for mmWave Devices: A Trade-off between Power Saving and Beam Correspondence

Beam correspondence, or downlink-uplink (DL-UL) beam reciprocity, refers...

Please sign up or login with your details

Forgot password? Click here to reset