Stochastic Geometry-based Analysis of LEO Satellite Communication Systems

06/28/2020
by   Anna Talgat, et al.
0

This letter studies the performance of a low-earth orbit (LEO) satellite communication system where the locations of the LEO satellites are modeled as a binomial point process (BPP) on a spherical surface. In particular, we study the user coverage probability for a scenario where satellite gateways (GWs) are deployed on the ground to act as a relay between the users and the LEO satellites. We use tools from stochastic geometry to derive the coverage probability for the described setup assuming that LEO satellites are placed at n different altitudes, given that the number of satellites at each altitude ak is Nk for all k. To resemble practical scenarios where satellite communication can play an important role in coverage enhancement, we compare the performance of the considered setup with a scenario where the users are solely covered by a fiber-connected base station (referred to as anchored base station or ABS in the rest of the paper) at a relatively far distance, which is a common challenge in rural and remote areas. Using numerical results, we show the performance gain, in terms of coverage probability, at rural and remote areas when LEO satellite communication systems are adopted. Finally, we draw multiple system-level insights regarding the density of GWs required to outperform the ABS, as well as the number of LEO satellites and their altitudes.

READ FULL TEXT
research
07/04/2023

A Fine Grained Stochastic Geometry Based Analysis on LEO Satellite Communication Systems

Recently, stochastic geometry has been applied to provide tractable perf...
research
06/19/2022

Coverage Analysis of LEO Satellite Downlink Networks: Orbit Geometry Dependent Approach

The low-earth-orbit (LEO) satellite network with mega-constellations can...
research
07/31/2022

SG-Based Analysis of LEO Satellite-Relayed Communication Systems

Due to their low latency, high capacity, and seamless worldwide coverage...
research
06/08/2021

Modeling Uplink Coverage Performance in Hybrid Satellite-Terrestrial Networks

Once deemed a far-fetched vision, emerging deployments of massive satell...
research
08/02/2022

Conditional Contact Angle Distribution in LEO Satellite-Relayed Transmission

This letter characterizes the contact angle distribution based on the co...
research
05/07/2020

A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network

A Non-terrestrial Network (NTN) comprising Low Earth Orbit (LEO) satelli...
research
07/25/2022

Evaluating the Accuracy of Stochastic Geometry Based Models for LEO Satellite Networks Analysis

This paper investigates the accuracy of recently proposed stochastic geo...

Please sign up or login with your details

Forgot password? Click here to reset