Stochastic generalized Nash equilibrium seeking under partial-decision information

11/10/2020 ∙ by Barbara Franci, et al. ∙ 0

We consider for the first time a stochastic generalized Nash equilibrium problem, i.e., with expected-value cost functions and joint feasibility constraints, under partial-decision information, meaning that the agents communicate only with some trusted neighbours. We propose several distributed algorithms for network games and aggregative games that we show being special instances of a preconditioned forward-backward splitting method. We prove that the algorithms converge to a generalized Nash equilibrium when the forward operator is restricted cocoercive by using the stochastic approximation scheme with variance reduction to estimate the expected value of the pseudogradient.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.