Stochastic Approximation Algorithms for Principal Component Analysis

01/07/2019
by   Jian Vora, et al.
0

Principal Component Analysis is a novel way of of dimensionality reduction. This problem essentially boils down to finding the top k eigen vectors of the data covariance matrix. A considerable amount of literature is found on algorithms meant to do so such as an online method be Warmuth and Kuzmin, Matrix Stochastic Gradient by Arora, Oja's method and many others. In this paper we see some of these stochastic approaches to the PCA optimization problem and comment on their convergence and runtime to obtain an epsilon sub-optimal solution. We revisit convex relaxation based methods for stochastic optimization of principal component analysis. While methods that directly solve the non convex problem have been shown to be optimal in terms of statistical and computational efficiency, the methods based on convex relaxation have been shown to enjoy comparable, or even superior, empirical performance. This motivates the need for a deeper formal understanding of the latter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset