STM: SpatioTemporal and Motion Encoding for Action Recognition

08/07/2019
by   Boyuan Jiang, et al.
4

Spatiotemporal and motion features are two complementary and crucial information for video action recognition. Recent state-of-the-art methods adopt a 3D CNN stream to learn spatiotemporal features and another flow stream to learn motion features. In this work, we aim to efficiently encode these two features in a unified 2D framework. To this end, we first propose an STM block, which contains a Channel-wise SpatioTemporal Module (CSTM) to present the spatiotemporal features and a Channel-wise Motion Module (CMM) to efficiently encode motion features. We then replace original residual blocks in the ResNet architecture with STM blcoks to form a simple yet effective STM network by introducing very limited extra computation cost. Extensive experiments demonstrate that the proposed STM network outperforms the state-of-the-art methods on both temporal-related datasets (i.e., Something-Something v1 & v2 and Jester) and scene-related datasets (i.e., Kinetics-400, UCF-101, and HMDB-51) with the help of encoding spatiotemporal and motion features together.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro