1 Introduction
In this paper we consider two closely related problems: planted clustering and submatrix localization, both concerning the recovery of hidden structures from a noisy random graph or matrix.

Planted Clustering: Suppose that out of a total of nodes, of them are partitioned into clusters of size , and the remaining
nodes do not belong to any clusters; each pair of nodes is connected by an edge with probability
if they are in the same cluster, and with probability otherwise. Given the adjacency matrix of the graph, the goal is to recover the underlying clusters (up to a permutation of cluster indices). By varying the values of the model parameters, this formulation covers several classical models including planted clique, planted coloring, planted densest subgraph, planted partition, and stochastic block model (cf. Definition 1 and discussion thereafter). 
Submatrix Localization: Suppose
is a random matrix with independent Gaussian entries with unit variance, where there are
submatrices of size with disjoint row and column supports, such that the entries inside these submatrices have mean , and the entries outside have mean zero. The goal is to identify the locations of these hidden submatrices given . This formulation generalizes the submatrix detection and biclustering models with a single bisubmatrix/cluster that are studied in previous work (cf. Definition 2 and discussion thereafter).
We are particularly interested in the setting where the number of clusters or submatrices may grow unbounded with the problem dimensions , , and at an arbitrary rate. We may call this the highrank setting because equals the rank of a matrix representation of the clusters and submatrices (cf. Definitions 1 and 2). The other parameters , , , and are also allowed to scale with or .
These two problems have been studied under various names such as community detection, graph clustering/biclustering, and reconstruction in stochastic block models, and have a broad range of applications. They are used as generative models for approximating realworld networks and data arrays with natural cluster/community structures, such as social networks [40], gene expressions [69], and online ratings [77]. They serve as benchmarks in the evaluation of algorithms for clustering [58], biclustering [15], community detection [65], and other network inference problems. They also provide a venue for studying the averagecase behaviors of many graph theoretic problems including maxclique, maxcut, graph partitioning, and coloring [21, 33]. The importance of these two problems are wellrecognized in many areas across computer science, statistics, and physics [67, 14, 64, 34, 62, 53, 12, 20, 10].
The planted clustering and submatrix localization problems exhibit an interplay between statistical and computational considerations. From a statistical point of view, we are interested in identifying the range of the model parameters for which the hidden structures—in this case the clusters and submatrices—can be recovered from the noisy data . The values of the parameters govern the statistical hardness of the problems: the problems become more difficult with smaller values of , , , and larger , because the observations are noisier and the soughtafter structures are more complicated. A statistically powerful algorithm is one that can recover the hidden structures for a large region of the model parameter space.
From a computational point of view, we are concerned with the running time of different recovery algorithms. An exhaustive search over the solution space (i.e., all possible clusterings or locations of the submatrices) may make for a statistically powerful algorithm, but is computationally intractable. A simpler algorithm with lower running time is computationally more desirable, but may succeed only in a smaller region of the model parameter space and thus has weaker statistical power.
Therefore, it is important to take a joint statisticalcomputational view to the planted clustering and submatrix localization problems, and to understand the tradeoffs between these two considerations. How do algorithms with different computational complexity achieve different statistical performance? For these two problems, what is the information limit (under what conditions on the model parameters does recovery become infeasible for any algorithm), and what is the computational limit (when does it become infeasible for computationally tractable algorithms)?
The results on this paper sheds light on the above questions. For both problems, our results demonstrate, in a precise and quantitative way, the following phenomenon: The parameter space can be partitioned into four disjoint regions, such that each region corresponds to statistically easier instances of the problem than the previous one, and recovery can be achieved by simpler algorithms with lower running time. Significantly, there might exist a large gap between the statistical performance of computationally intractable algorithms and that of computationally efficient algorithms. We elaborate in the next two subsections.
1.1 Planted Clustering: The Four Regimes
For concreteness, we first consider the planted clustering problem in the setting , and . This covers the standard planted bisection/partition/disjointclique models.
The statistical hardness of cluster recovery is captured by the quantity , which is essentially a measure of the SignaltoNoise Ratio (SNR). Our main theorems identify the following four regimes of the problem defined by the value of this quantity. Here for simplicity, the results use the notation and , which ignore constant and factors; our main theorems do capture the factors.

The Impossible Regime: . In this regime, there is no algorithm, regardless of its computational complexity, that can recover the clusters with a vanishing probability of error.

The Hard Regime: . There exists a computationally expensive algorithm—specifically the Maximum Likelihood Estimator (MLE)—that recovers the clusters with high probability in this regime (as well as in the next two easier regimes; we omit such implications in the sequel). There is no known polynomialtime algorithm that succeeds in this regime.

The Easy Regime: . There exists a polynomialtime algorithm—specifically a convex relaxation of the MLE—that recovers the clusters with high probability in this regime. Moreover, this algorithm provably fails in the hard regime above.

The Simple Regime: . A simple algorithm based on counting node degrees and common neighbors recovers the clusters with high probability in this regime, and provably fails outside this regime (i.e., in the hard and easy regimes).
We illustrate these four regimes in Figure 1 assuming the scaling and for two constants . Here cluster recovery becomes harder with larger and smaller . In this setting, the four regimes correspond to four disjoint and nonempty regions of the parameter space. Therefore, a computationally more expensive algorithm leads to an orderwise (polynomial in ) enhancement in the statistical power. For example, when , the simple, polynomialtime, and computationally intractable algorithms succeeds for larger than , , and , respectively. There is a similar hierarchy for the allowable sparsity of the graph, given by , , and assuming .
The results in the impossible and hard regimes together establish the minimax recovery boundary of the planted clustering problem, and show that the MLE is statistically orderoptimal. These two regimes are separated by an “information barrier”: in the impossible regime the graph does not carry enough information to distinguish different cluster structures, so recovery is statistically impossible.
Our performance guarantees for the convexified MLE improve the best known results for polynomial time algorithms in terms of the scaling, particularly in the setting when the number of clusters are allow to grow with . We conjecture that no polynomialtime algorithm can perform significantly better and succeed in the hard regime, i.e., the convexified MLE achieves the computational limit orderwise. While we do not prove the conjecture, there are many supporting evidences; cf. Section 2.3
. For instance, there is a “spectral barrier”, determined by the spectrum of an appropriately defined noise matrix, that prevents the convexified MLE and spectral clustering algorithms from succeeding in the hard regime. In the special setting with a single cluster, the work by
[55, 43] proves that no polynomialtime algorithm can reliably recover the cluster if conditioned on the planted clique hardness hypothesis.The simple counting algorithm fails outside the simple regime due to a “variance barrier” which is associated with the fluctuations of the node degrees and the numbers of common neighbors. The simple algorithm is statistically orderwise weaker than the convexified MLE in separating different clusters.
General results
Our main theorems apply beyond the special setting above and allow for general values of , , , and . The four regimes and the statisticalcomputational tradeoffs can be observed for a broad spectrum of planted problems, including planed partition, planted coloring, planted disjointclique and planted densestsubgraph models. Table 1 summarizes the implications of our results for some of these models. More precise and general results are given in Section 2.
1.2 Submatrix Localization: The Four Regimes
Similar results hold for the submatrix localization problem. Consider the setting with and . The statistical hardness of submatrix localization is captured by the quantity , which is again a measure of the SNR. In the high SNR setting with , the submatrices can be trivially identified by elementwise thresholding. In the more interesting low SNR setting with , our main theorems identify the following four regimes, which have the same meanings as before:

The Impossible Regime: . All algorithm fail in this regime.

The Hard Regime: . The computationally expensive MLE succeeds, and it is conjectured that no polynomialtime algorithm succeeds here.

The Easy Regime: . The polynomialtime convexified MLE succeeds, and provably fails in the hard regime.

The Simple Regime: . A simple thresholding algorithm succeeds, and provably fails outside this regime.
We illustrate these four regimes in Figure 1 assuming and . In fact, the results above hold in the more general setting where the entries of are subGaussian.
1.3 Discussions
This paper presents a systematic study of planted clustering and submatrix localization with a growing number of clusters/submatrices. We provide sharp characterizations of the minimax recovery boundary with the lower and upper bounds matching up to constants. We also give improved performance guarantees for convex optimization approaches and the simple counting/thresholding algorithms. In addition, complementary results are given on the failure conditions for these algorithms, hence characterizing their performance limits. Our analysis addresses several challenges that arise in the highrank setting. The results in this paper highlight the similarity between planted clustering and submatrix localization, and place under a unified framework several classical problems such as planted clique, partition, coloring, and densest graph.
The central theme of our investigation is the interaction between the statistical and the computational aspects in the problems, i.e., how to handle more noise and more complicated structures using more computation. Our study parallels a recent line of work that takes a joint statistical and computational view on inference problems [15, 66, 18, 24, 55]; several of these works are closely related to special cases of the planted clustering and biclustering models. In this sense, we investigate two specific but fundamental problems, and we expect that the phenomena and principles described in this paper are relevant more generally. Below we provide additional discussions, and comment on the relations with existing work.
High rank vs. rank one.
Several recent works investigate the problems of singlesubmatrix detection/localization [50, 13], planted densest subgraph detection [14]
and sparse principal component analysis (PCA)
[11] (cf. Section 1.4 for a literature review). Even earlier is the extensive study of the statistical/computational hardness of Planted Clique. The majority of these works focus on the rankone setting with a single clique, cluster, submatrix or principal component. This paper considers the more general highrank setting where the number of clusters/submatrices may grow quickly with the problem size. This setting is important in many empirical networks [54, 67], and poses significant challenges to the analysis. Moreover, there are qualitative differences between these two settings. We discuss one such difference in the next paragraph.The power of convex relaxations.
In the previous work on the rankone case of the submatrix detection/localization problem [55, 15] and the sparse PCA problem [51], it is shown that simple algorithms based on averaging/thresholding have orderwise similar statistical performance as more sophisticated convex optimization approaches. In contrast, for the problems of finding multiple clusters/submatrices, we show that convex relaxation approaches are statistically much more powerful than the simple counting/thresholding algorithm. Our analysis reveals that the power of convex relaxations lies in separating different clusters/submatrices, but not in identifying a single cluster/submatrix. Our results thus provide one explanation for the (somewhat curious) observation in previous work regarding the lack of benefit of using sophisticated methods, and demonstrate a finer spectrum of computationalstatistical tradeoffs.
Detection vs. estimation.
Several recent works on planted densest subgraph and submatrix detection have focused on the detection or hypothesis testing version of the problems, i.e., detecting the existence of a dense cluster or an elevated submatrix (cf. Section 1.4 for literature review). In this paper, we study the (support) estimation version of the problems, where the goal is to find the precise locations of the clusters/submatrices. In general estimation appears to be harder than detection. For example, if we consider the scalings of and in Figure 1 of this paper, and compare with Figure 1 in [55] which studies submatrix detection, we see that the minimax localization boundary is , whereas the minimax detection boundary is at a higher value . For the planted densest subgraph problem, we see a similar gap between the minimax detection and estimation boundaries if we compare our results with results in [14, 43]. In addition, it is shown in [55, 43] that if , the planted submatrix or densest subgraph can be detected in linear time; if , no polynomialtime test exists assuming the hardness of the planted clique detection problem. For estimation, we prove the sufficient condition , which is the best known performance guarantee for polynomialtime algorithms—again we see a gap between detection and estimation. For detecting a sparse principal component, see the seminar work [18] for proving computational lower bounds conditioned on the hardness of Planted Clique.
Extensions.
It is a simple exercise to extend our results to a variant of the planted clustering model where the graph adjacency matrix has subGaussian entries instead of Bernoulli, corresponding to a weighted graph clustering problem. Similarly, we can also extend the submatrix location problem to the setting with Bernoulli entries, which is the biclustering problem on an unweighted graph and covers the planted biclique problem [39, 9] as a special case.
1.4 Related Work
There is a large body of literature, from the physics, computer science and statistics communities, on models and algorithms for graph clustering and biclustering, as well as on their various extensions and applications. A complete survey is beyond the scope of this paper. Here we focus on theoretical work on planted clustering/submatrix localization concerning exact recovery of the clusters/submatrices. Detailed comparisons of existing results with ours are provided after we present each of our theorems in Sections 2 and 3. We emphasize that our results are nonasymptotic and applicable to finite values of and , whereas some of the results below require .
Planted Clique, Planted Densest Subgraph
The planted clique model (, , ) is the most widely studied planted model. If the clique has size , recovery is impossible as the random graph will have a clique with at least the same size; if , an exhaustive search succeeds [6]; if , various polynomialtime algorithms work [6, 35, 36]; if , the nodes in the clique can be easily identified by counting degrees [52]. It is an open problem to find polynomialtime algorithms which succeed in the regime with , and it is believed that this cannot be done [45, 48, 4, 39]. The four regimes above can be considered as a special case of our results for the general planted clustering model. The planted densest subgraph model generalizes the planted clique model by allowing general values of and . The detection version of this problem is studied in [14, 73], and conditional computational hardness results are obtained in [43].
Planted DisjointCliques, Partition, and Coloring
Subsequent work considers the setting with planted cliques [60], as well as the planted partition model (a.k.a. stochastic block model) with general values of [33, 46]. A subset of these results allow for growing values . Most existing work focuses on the recovery performance of specific polynomialtime algorithms. The stateoftheart recovery results for planted disjointclique are given in [60, 29, 8], and for planted partition in [29, 12, 23]; see [30] for a survey of these results. The setting with is sometimes called the heterophily case, with the planted coloring model () as an important special case [5, 32]. Our performance guarantees for the convexified MLE (cf. Table 1) improve upon the previously known results for polynomialtime algorithms. Also, particularly when the number of clusters is allowed to scale arbitrarily with , matching upper and lower bounds for the informationtheoretic limits were previously unknown. This paper identifies the minimax recovery thresholds for general values of and , and shows that they are achieved by the MLE. Our results also suggest that polynomialtime algorithms may not be able to achieve these thresholds in the growing setting with the cluster size sublinear in .
Converse Results for Planted Problems
Complementary to the achievability results, another line of work focuses on converse results, i.e., identifying necessary conditions for recovery, either for any algorithm, or for any algorithm in a specific class. For the planted partition model with , necessary conditions for any algorithm to succeed are obtained in [26, 29, 16, 1] using informationtheoretic tools. For spectral clustering algorithms and convex optimization approaches, more stringent conditions are shown to be needed [64, 74]. We generalize and improve upon the existing work above.
Sharp Exact Recovery Thresholds with a Constant Number of Clusters
Since the conference version of this paper is published [31], a number of papers have appeared on the informationtheoretic limits of exact recovery under the stochastic block model. Under the special setting with and , the recovery threshold with sharp constants is identified in [1] for , and in [63] for general scalings of . Very recently, [2] proved the sharp recovery threshold for the more general case where , and the incluster and crosscluster edge probabilities are heterogeneous and scale as . Notably, when the number of clusters is bounded, sharp recovery thresholds may be achieved by polynomialtime algorithms, in particular, by the semidefinite programming relaxation of the maximum likelihood estimator [42, 44]. Our results are optimal up to absolute constant factors, but are nonasymptotic and apply to a growing number of clusters/submatrices of size sublinear in .
Approximate Recovery
While not the focus of this paper, approximate cluster recovery (under various criteria) has also been studied, e.g., for planted partition with clusters in [61, 62, 56, 78, 34]. These results are not directly comparable to ours, but often the approximate recovery conditions differ from the exact recovery conditions by a factor. When constant factors are concerned, the existence of a hard regime is also conjectured in [34, 61].
Submatix Localization
The statistical and computational tradeoffs in locating a single submatrix (i.e., ) are studied in [15, 50], where the information limit is shown to be achieved by a computationally intractable algorithm orderwise. The success and failure conditions for various polynomialtime procedures are also derived. The work [7] focuses on success conditions for a convex relaxation approach; we improve the results particularly in the highrank setting. The singlesubmatrix detection problem is studied in [22, 69, 70, 13, 19], and the recent work by [55] establishes the conditional hardness for this problem.
1.5 Paper Organization and Notation
The remainder of this paper is organized as follows. In Section 2 we set up the planted clustering model and present our main theorems for the impossible, hard, easy, and simple regimes. In Section 3 we turn to the submatrix localization problem and provide the corresponding theorems for the four regimes. Section 4 provides a brief summary with a discussion of future work. We prove the main theorems for planted clustering and submatrix localization in Sections 5 and 6, respectively.
Notation
Let and , and for any positive integer . We use etc. to denote absolute numerical constants whose values can be made explicit and are independent of the model parameters. We use the standard bigO notations: for two sequences , we write or to mean for an absolute constant and all . Similarly, means , and means .
2 Main Results for Planted Clustering
The planted clustering problem is defined by five parameters and such that .
Definition 1 (Planted Clustering).
Suppose nodes (which are identified with ) are divided into two subsets and with and . The nodes in are partitioned into disjoint clusters (called true clusters), where for each and . Nodes in do not belong to any of the clusters and are called isolated nodes. A random graph is generated based on the cluster structure: for each pair of nodes and independently of all others, we connect them by an edge with probability (called incluster edge density) if they are in the same cluster, and otherwise with probability (called crosscluster edge density).
We emphasize again that the values of , , , and are allowed to be functions of . The goal is to exactly recover the true clusters up to a permutation of cluster indices given the random graph.
The model parameters are assumed to be known to the algorithms. This assumption is often not necessary and can be relaxed [29, 14]. It is also possible to allow for nonuniform cluster sizes [3], and heterogeneous edge probabilities [23] and node degrees [26, 29]. These extensions are certainly important in practical applications; we do not delve into them, and point to the referenced papers above and the references therein for work in this direction.
To facilitate subsequent discussion, we introduce a matrix representation of the planted clustering problem. We represent the true clusters by a cluster matrix , where for , for , and if and only if nodes and are in the same true cluster. Note that the rank of equals , hence the name of the highrank setting. The adjacency matrix of the graph is denoted as , with the convention . Under the planted clustering model, we have if and if for all . The problem reduces to recovering given .
The planted clustering model generalizes several classical planted models.
Reduction to the case.
For clarity we shall focus on the homophily setting with ; results for the case are similar. In fact, any achievability or converse result for the case immediately implies a corresponding result for . To see this, observe that if the graph is generated from the planted clustering model with , then the flipped graph ( is the allone matrix and
is the identity matrix) can be considered as generated with in/crosscluster edge densities
and , where . Therefore, a problem with can be reduced to one with . Clearly the reduction can also be done in the other direction.2.1 The Impossible Regime: Minimax Lower Bounds
In this section, we characterize the necessary conditions for cluster recovery. Let be the set of cluster matrices corresponding to clusters of size ; i.e.,
We use to denote an estimator which takes as input the graph and outputs an element of as an estimate of the true
. Our results are stated in terms of the KullbackLeibler (KL) divergence between two Bernoulli distributions with means
and , denoted by . The following theorem gives a lower bound on the minimax error probability of recovering .Theorem 2.1 (Impossible).
Suppose . Under the planted clustering model with , if one of the following two conditions holds:
(1)  
(2) 
then
where the infimum ranges over all measurable function of the graph.
The theorem shows it is fundamentally impossible to recover the clusters with success probability close to 1 in the regime where (1) or (2) holds, which is thus called the impossible regime. This regime arises from an information/statistical barrier: The KL divergence on the LHSs of (1) and (2) determines how much information of is contained in the data . If the incluster and crosscluster edge distributions are close (measured by the KL divergence) or the cluster size is small, then does not carry enough information to distinguish different cluster matrices.
It is sometimes more convenient to use the following corollary, derived by upperbounding the KL divergence in (1) and (2) using its Taylor expansion. This corollary was used when we overviewed our results in Section 1.1. See table 1 for its implications for specific planted models.
Corollary 2.2.
Suppose . Under the planted clustering model with , if any one of the following three conditions holds:
(3)  
(4)  
(5) 
then
Note the asymmetry between the roles of and in the conditions (1) and (2); this is made apparent in Corollary 2.2. To see why the asymmetry is natural, recall that by a classical result of [41], the largest clique in a random graph has size almost surely. Such a clique cannot be distinguished from a true cluster if , even when . This is predicted by the condition (5). When , cluster recovery requires to ensure all true clusters are connected within themselves, matching the condition (4). The term on the RHS of (1) and (4) is relevant only when . Potential improvement on this term is left to future work.
Comparison to previous work
When and , our results recover the threshold for the classical planted clique problem. For planted partition with clusters of size and , the work in [26, 28] establishes the necessary condition ; our result is stronger by a logarithmic factor. The work in [1] also considers planted partition with and focus on the special case with the scaling ; they establish the condition , which is consistent with our results up to constants in this regime. Compared to previous work, we handle the more general setting where and may scale arbitrarily with .
2.2 The Hard Regime: Optimal Algorithm
In this subsection, we characterize the sufficient conditions for cluster recovery which match the necessary conditions given in Theorem 2.1 up to constant factors. We consider the Maximum Likelihood Estimator of under the planted clustering model, which we now derive. The loglikelihood of observing the graph given a cluster matrix is
(6) 
Given , the MLE maximizes the the loglikelihood over the set of all possible cluster matrices. Note that for all , so the last three terms in (6) are independent of . Therefore, the MLE for the case is given as in Algorithm 1.
(7)  
s.t.  (8) 
Algorithm 1 is equivalent to finding disjoint clusters of size that maximize the number of edges inside the clusters (similar to Densest Subgraph), or minimize the number of edges outside the clusters (similar to Balanced Cut) or the disagreements between and (similar to Correlation Clustering in [17]). Therefore, while Algorithm 1 is derived from the planted clustering model, it is in fact quite general and not tied to the modeling assumptions. Enumerating over the set is computationally intractable in general since .
The following theorem provides a success condition for the MLE.
Theorem 2.3 (Hard).
We refer to the regime in which the condition (9) holds but (14) below fails as the hard regime, as clustering is statistically possible but conjectured to be computationally hard (cf. Conjecture 2.8). The conditions (9) above and (1)–(2) in Theorem 2.1 match up to a constant factor under the mild assumption . This establishes the minimax recovery boundary for planted clustering and the minimax optimality of the MLE up to constant factors.
By lower bounding the KL divergence, we obtain the following corollary, which is sometimes more convenient to use. See Table 1 for its implications for specific planted models.
Corollary 2.4.
The condition (10) can be simplified to if , and to if . These match the converse conditions in Corollary 2.2 up to constants.
Comparison to previous work
Theorem 2.3 provides the first minimax results tight up to constant factors when the number of clusters is allowed to grow, potentially at a nearlylinear rate . Interestingly, for a fixed cluster size, the recovery boundary (9) depends only weakly on the number of clusters though the logarithmic term. For and , we recover the recovery boundary for planted clique . For the planted densest subgraph model where , bounded away from and , the minimax detection boundary is shown in [14] to be ; our results show that the minimax recovery boundary is , which is strictly above the detection boundary because can be much smaller than For the planted bisection model with two equalsized clusters: if , the sharp recovery boundary is found in [1] and [63] to be , which is consistent with our results up to constants; if , the correlated recovery limit is shown in [61, 56, 62] to be , which is consistent with our results up to a logarithmic factor.
2.3 The Easy Regime: PolynomialTime Algorithms
In this subsection, we present a polynomialtime algorithm for the planted clustering problem and show that it succeeds in the easy regime described in the introduction.
Our algorithm is based on taking a convex relaxation of the MLE in Algorithm 1. Note that the objective function (7) in the MLE is linear, but the constraint involves a set that is discrete, nonconvex and exponentially large. We replace this nonconvex constraint with a trace norm (a.k.a. nuclear norm) constraint and a set of linear constraints. This leads to the convexified MLE given in Algorithm 2. Here the trace norm
is defined as the sum of the singular values of
. Note that the true is feasible to the optimization problem (11)–(13) since(11)  
s.t.  (12)  
(13) 
The optimization problem in Algorithm 2 is a semidefinite program (SDP) and can be solved in polynomial time by standard interior point methods or various fast specialized algorithms such as ADMM; e.g., see [47, 7]. Similarly to Algorithm 1, this algorithm is not strictly tied to the planted clustering model as it can also be considered as a relaxation of Correlation Clustering or Balanced Cut. In the case where the values of and are unknown, one may replace the hard constraints (12) and (13) with an appropriately weighted objective function; cf. [29].
The following theorem provides a sufficient condition for the success of the convexified MLE. See Table 1 for its implications for specific planted models.
Theorem 2.5 (Easy).
When , we refer to the regime where the condition (14) holds and (17) below fails as the easy regime. When , the easy regime is where (14) holds and (17) or (18) below fails.
If , it is easy to see that the smallest possible cluster size allowed by (14) is and the largest number of clusters is , both of which are achieved when . This generalizes the tractability threshold of the classic planted clique problem. If (we call it the high SNR setting), the condition (14) becomes to . In this case, it is possible to go beyond the limit on the cluster size. In particular, when , the smallest possible cluster size is , which can be much smaller than .
Remark 2.6.
Theorem 2.5 immediately implies guarantees for other tighter convex relaxations. Define the sets and
The constraint in Algorithm 2 corresponds to , while is the constraint in the standard SDP relaxation. Clearly Therefore, if we replace the constraint (12) with , we obtain a tighter relaxation of the MLE, and Theorem 2.5 guarantees that it also succeeds to recover under the condition (14). The same is true if we consider other tighter relaxations, such as those involving the triangle inequalities [58], the rowwise constraints [7], the max norm [47] or the Fantope constraint [76]. For the purpose of this work, these variants of the convex formulation make no significant difference, and we choose to focus on (11)–(13) for generality.
Converse for the trace norm relaxation approach
We have a partial converse to the achievability result in Theorem 2.5. The following theorem characterizes the conditions under which the trace norm relaxation (11)–(13) provably fails with high probability; we suspect the standard SDP relaxation with the constraint also fails with high probability under the same conditions, but we do not have a proof.
Theorem 2.7 (Easy, Converse).
Theorem 2.7 proves the failure of our trace norm relaxation that has access to the exact number and sizes of the clusters. Consequently, replacing the constraints (12) and (13) with a Lagrangian penalty term in the objective would not help for any value of the Lagrangian multipliers. Under the assumptions of Theorems 2.5 and 2.7, by ignoring log factors, the sufficient and necessary condition for the success of our convexified MLE is
(15) 
whereas the success condition (10) for the MLE simplifies to
We see that the convexified MLE is statistically suboptimal due to the extra second term in (15). This term is responsible for the threshold on the cluster size for the tractability of planted clique. The term has an interesting interpretation. Let be the centered adjacency matrix. The matrix ,^{2}^{2}2Here denotes the elementwise product. i.e., the deviation restricted to the intercluster node pairs, can be viewed as the “crosscluster noise matrix”. Note that the squared largest singular value of the matrix is , whereas the squared largest singular value of concentrates around (see e.g., [25]). Therefore, the second term in (15) is the “spectral noisetosignal ratio” that determines the performance of the convexified MLE. In fact, our proofs for Theorems 2.5 and 2.7 build on this intuition.
Comparison to previous work
We refer to [29] for a survey of the performance of stateoftheart polynomialtime algorithms under various planted models. Theorem 2.5 matches and in many cases improves upon existing results in terms of the scaling. For example, for planted partition, the previous best results are in [29] and in [12]. Theorem 2.5 removes some extra factors, and is also orderwise better when (the high SNR case) or . For planted disjointclique, existing results require to be [60], [8] or [29]. We improve them to .
Our converse result in Theorem 2.7 is inspired by, and improves upon, the recent work in [74], which focuses on the special case , and considers a convex relaxation approach that is equivalent to our relaxation (11)–(13) but without the additional equality constraint in (13). The approach is shown to fail when . Our result is stronger in the sense that it applies to a tighter relaxation and a larger region of the parameter space.
Limits of polynomialtime algorithms
By comparing the recovery limit established in Theorems 2.1 and 2.3 with the performance limit of our convex method established in Theorem 2.5, we get two strikingly different observations. On one hand, if and , the recovery limit and performance limit of our convex method coincide up to constant factors at . Thus, the convex relaxation is tight and the hard regime disappears up to constants, even though the hard regime may still exist when constant factors are concerned [61, 34]. In this case, we get a computationally efficient and statistically orderoptimal estimator. On the other hand, if , there exists a substantial gap between the information limit and performance limit of our convex method. We conjecture that no polynomialtime algorithm has orderwise better statistical performance than the convexified MLE and succeeds significantly beyond the condition (14).
Conjecture 2.8.
For any constant , there is no algorithm with running time polynomial in that, for all and with probability at least , outputs the true of the planted clustering problem with and
(16) 
If the conjecture is true, then in the asymptotic regime and , the computational limit for the cluster recovery is given by , i.e., the boundary between the green regime and red regime in Fig. 1.
A rigorous proof of Conjecture 2.8 seems difficult with current techniques. There are other possible convex formulations for planted clustering. The space of possible polynomialtime algorithms is even larger. It is impossible for us to study each of them separately and obtain a converse result as in Theorem 2.7. There are however several evidences that support the conjecture:

The special case with corresponds to the regime for the classical Planted Clique problem, which is conjectured to be computationally hard [4, 68, 39], and was used as an assumption for proving other hardness results [45, 48, 49]. Conjecture 2.8 can be considered as a generalization of the Planted Clique conjecture to the setting with multiple clusters and general values of and , and may be used to study the computational hardness of other problems [27].

It is shown in [43] that for the special setting with a single cluster, no polynomialtime algorithm can reliably recover the planted cluster if conditioned on the planted clique hardness hypothesis. Here the planted clique hardness hypothesis refers to the statement that for any fixed constants and , there exist no randomized polynomialtime tests to distinguish an ErdősRényi random graph and a planted clique model which is obtained by adding edges to vertices chosen uniformly from to form a clique.

As discussed earlier, if (16) holds, then the graph spectrum is dominated by noise and fails to reveal the underlying cluster structure. The condition (16) therefore represents a “spectral barrier” for clustering. The work in [64] uses a similar spectral barrier argument to prove the failure of a large class of algorithms that rely on the graph spectrum; our Theorem 2.7 shows that the convexified MLE fails for a similar reason.
2.4 The Simple Regime: A Counting Algorithm
In this subsection, we consider a simple recovery procedure in Algorithm 3, which is based on counting node degrees and common neighbors.
We note that steps 1 and 2 of Algorithm 3 are considered in [52] and [38] respectively for the special cases of recovering a single planted clique or two planted clusters. Let be the set of edges. It is not hard to see that step 1 runs in time and step 2 runs in time , since each node only needs to look up its local neighborhood up to distance two. It is possible to achieve even smaller expected running time using clever data structures.
The following theorem provides sufficient conditions for the simple counting algorithm to succeed. Compared to the previous work in [52, 38], our results apply to general values of , , and . See Table 1 for its implications for specific planted models.
Theorem 2.9 (Simple).
For planted clustering with , there exist universal constants such that Algorithm 3 correctly finds the isolated nodes with probability at least if
(17) 
and finds the clusters with probability at least if further
(18) 
Remark 2.10.
If as , we can obtain slightly better performance by counting the common nonneighbors in Step 2, which succeeds under condition (18) with and replaced by and , respectively, i.e., the RHS of (18) simplifies to .
In the case with a single clusters , we refer to the regime where the condition (17) holds as the simple regime; in the case with , the simple regime is where both conditions (17) and (18) hold. It is instructive to compare these conditions with the success condition (14) for the convexified MLE. The condition (17) has an additional factor on the RHS. This means when and the only task is to find the isolated nodes, the counting algorithm performs nearly as well as the sophisticated convexified MLE. On the other hand, when and one needs to distinguish between different clusters, the convexified MLE orderwise outperforms the counting algorithm whenever , as the condition (18) is orderwise more restrictive than (14). Nevertheless, when , both algorithms can recover clusters of size , making the simple counting algorithm a legitimate candidate in such a setting and a benchmark to which other algorithms can be compared with.
In the high SNR case with , the counting algorithm can recover clusters with size much smaller than ; e.g., if and , it only requires .
Converse for the counting algorithm
We have a (nearly)matching converse to Theorem 2.9. The following theorem characterizes when the counting algorithm provably fails.
Theorem 2.11 (Simple, Converse).
Under the planted clustering model with , for any constant , there exist universal constants for which the following holds. Suppose , , and . Algorithm 3 fails to correctly identify all the isolated nodes with probability at least if
(19) 
and fails to correctly recover all the clusters with probability at least if
(20) 
Remark 2.12.
Apart from some technical conditions, Theorems 2.9 and 2.11 show that the conditions (17) and (18) are both sufficient and necessary. In particular, the counting algorithm cannot succeed outside the simple regime, and is indeed strictly weaker in separating different clusters as compared to the convexified MLE. Our proof reveals that the performance of the counting algorithm is limited by a variance barrier: The RHS of (17) and (18) are associated with the variance of the node degrees and common neighbors (i.e., and in Algorithm 3
), respectively. There exist nodes whose degrees deviate from their expected value on the order of the standard deviation, and if the condition (
17) does not hold, then the deviation will outweigh the difference between the expected degrees of the isolated nodes and those of the nonisolated nodes. A similar argument applies to the number of common neighbors.3 Main Results for Submatrix Localization
In this section, we turn to the submatrix localization problem, sometimes known as biclustering [15]. We consider the following specific setting, which is defined by six parameters , and such that and . We use the shorthand notation .
Definition 2 (Submatrix Localization).
A random matrix is generated as follows. Suppose that rows of are partitioned into disjoint subsets of equal size , and columns of are partitioned into disjoint subsets of equal size . For each , we have if for some and
Comments
There are no comments yet.