Static Data Structure Lower Bounds Imply Rigidity

11/07/2018
by   Zeev Dvir, et al.
0

We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of t ≥ω(^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s= (1+ε)n), would already imply a semi-explicit ( P^NP) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (t≥ n^δ) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro