State-Aware Rate Adaptation for UAVs by Incorporating On-Board Sensors

10/21/2019
by   Shiyue He, et al.
0

Nowadays unmanned aerial vehicles (UAVs) are being widely applied to a wealth of civil and military applications. Robust and high-throughput wireless communication is the crux of these UAV applications. Yet, air-to-ground links suffer from time-varying channels induced by the agile mobility and dynamic environments. Rate adaptation algorithms are generally used to choose the optimal data rate based on the current channel conditions. State-of-the-art approaches leverage physical layer information for rate adaptation, and they work well under certain conditions. However, the above protocols still have limitation under constantly changing flight states and environments for air-to-ground links. To solve this problem, we propose StateRate, a state-optimized rate adaptation algorithm that fully exploits the characteristics of UAV systems using a hybrid deep learning model. The key observation is that the rate adaptation strategy needs to be adjusted according to motion-dependent channel models, which can be reflected by flight states. In this work, the rate adaptation protocol is enhanced with the help of the on-board sensors in UAVs. To make full use of the sensor data, we introduce a learning-based prediction module by leveraging the internal state to dynamically store temporal features under variable flight states. We also present an online learning algorithm by employing the pre-trained model that adapts the rate adaptation algorithm to different environments. We implement our algorithm on a commercial UAV platform and evaluate it in various environments. The results demonstrate that our system outperforms the best-known rate adaptation algorithm up to 53 velocity is 2-6 m/s.

READ FULL TEXT

page 1

page 7

page 8

page 11

page 13

research
06/23/2022

Sensor-Assisted Rate Adaptation for UAV MU-MIMO Networks

Propelled by multi-user MIMO (MU-MIMO) technology, unmanned aerial vehic...
research
09/23/2019

Sensor-Augmented Neural Adaptive Bitrate Video Streaming on UAVs

Recent advances in unmanned aerial vehicle (UAV) technology have revolut...
research
09/01/2021

V2X Communication Between Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs)

Connectivity between ground vehicles can be utilized and expanded to inc...
research
05/23/2021

Distributed CNN Inference on Resource-Constrained UAVs for Surveillance Systems: Design and Optimization

Unmanned Aerial Vehicles (UAVs) have attracted great interest in the las...
research
05/08/2021

RISe of Flight: RIS-Empowered UAV Communications for Robust and Reliable Air-to-Ground Networks

Next generation mobile networks need to expand towards uncharted territo...
research
06/28/2021

Avis: In-Situ Model Checking for Unmanned Aerial Vehicles

Control firmware in unmanned aerial vehicles (UAVs) uses sensors to mode...
research
11/27/2022

UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of Recent Learning Algorithms

Recent technological advancements in space, air and ground components ha...

Please sign up or login with your details

Forgot password? Click here to reset