Staged Mixture Modelling and Boosting

12/12/2012 ∙ by Christopher Meek, et al. ∙ 0

In this paper, we introduce and evaluate a data-driven staged mixture modeling technique for building density, regression, and classification models. Our basic approach is to sequentially add components to a finite mixture model using the structural expectation maximization (SEM) algorithm. We show that our technique is qualitatively similar to boosting. This correspondence is a natural byproduct of the fact that we use the SEM algorithm to sequentially fit the mixture model. Finally, in our experimental evaluation, we demonstrate the effectiveness of our approach on a variety of prediction and density estimation tasks using real-world data.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.