Stage-based Hyper-parameter Optimization for Deep Learning

11/24/2019
by   Ahnjae Shin, et al.
0

As deep learning techniques advance more than ever, hyper-parameter optimization is the new major workload in deep learning clusters. Although hyper-parameter optimization is crucial in training deep learning models for high model performance, effectively executing such a computation-heavy workload still remains a challenge. We observe that numerous trials issued from existing hyper-parameter optimization algorithms share common hyper-parameter sequence prefixes, which implies that there are redundant computations from training the same hyper-parameter sequence multiple times. We propose a stage-based execution strategy for efficient execution of hyper-parameter optimization algorithms. Our strategy removes redundancy in the training process by splitting the hyper-parameter sequences of trials into homogeneous stages, and generating a tree of stages by merging the common prefixes. Our preliminary experiment results show that applying stage-based execution to hyper-parameter optimization algorithms outperforms the original trial-based method, saving required GPU-hours and end-to-end training time by up to 6.60 times and 4.13 times, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro