Stacked Semantic-Guided Network for Zero-Shot Sketch-Based Image Retrieval
Zero-shot sketch-based image retrieval (ZS-SBIR) is a task of cross-domain image retrieval from a natural image gallery with free-hand sketch under a zero-shot scenario. Previous works mostly focus on a generative approach that takes a highly abstract and sparse sketch as input and then synthesizes the corresponding natural image. However, the intrinsic visual sparsity and large intra-class variance of the sketch make the learning of the conditional decoder more difficult and hence achieve unsatisfactory retrieval performance. In this paper, we propose a novel stacked semantic-guided network to address the unique characteristics of sketches in ZS-SBIR. Specifically, we devise multi-layer feature fusion networks that incorporate different intermediate feature representation information in a deep neural network to alleviate the intrinsic sparsity of sketches. In order to improve visual knowledge transfer from seen to unseen classes, we elaborate a coarse-to-fine conditional decoder that generates coarse-grained category-specific corresponding features first (taking auxiliary semantic information as conditional input) and then generates fine-grained instance-specific corresponding features (taking sketch representation as conditional input). Furthermore, regression loss and classification loss are utilized to preserve the semantic and discriminative information of the synthesized features respectively. Extensive experiments on the large-scale Sketchy dataset and TU-Berlin dataset demonstrate that our proposed approach outperforms state-of-the-art methods by more than 20% in retrieval performance.
READ FULL TEXT