Stacked Intelligent Metasurfaces for Multiuser Downlink Beamforming in the Wave Domain
Intelligent metasurface has recently emerged as a promising technology that enables the customization of wireless environments by harnessing large numbers of inexpensive configurable scattering elements. However, prior studies have predominantly focused on single-layer metasurfaces, which have limitations in terms of the number of beam patterns they can steer accurately due to practical hardware restrictions. In contrast, this paper introduces a novel stacked intelligent metasurface (SIM) design. Specifically, we investigate the integration of SIM into the downlink of a multiuser multiple-input single-output (MISO) communication system, where a SIM, consisting of a multilayer metasurface structure, is deployed at the base station (BS) to facilitate transmit beamforming in the electromagnetic wave domain. This eliminates the need for conventional digital beamforming and high-resolution digital-to-analog converters at the BS. To this end, we formulate an optimization problem that aims to maximize the sum rate of all user equipments by jointly optimizing the transmit power allocation at the BS and the wave-based beamforming at the SIM, subject to both the transmit power budget and discrete phase shift constraints. Furthermore, we propose a computationally efficient algorithm for solving this joint optimization problem and elaborate on the potential benefits of employing SIM in wireless networks. Finally, the numerical results corroborate the effectiveness of the proposed SIM-enabled wave-based beamforming design and evaluate the performance improvement achieved by the proposed algorithm compared to various benchmark schemes. It is demonstrated that considering the same number of transmit antennas, the proposed SIM-based system achieves about 200% improvement in terms of sum rate compared to conventional MISO systems.
READ FULL TEXT