Stable rank-adaptive Dynamically Orthogonal Runge-Kutta schemes

11/15/2022
by   Aaron Charous, et al.
0

We develop two new sets of stable, rank-adaptive Dynamically Orthogonal Runge-Kutta (DORK) schemes that capture high-order curvature of the nonlinear low-rank manifold. The DORK schemes asymptotically approximate the truncated singular value decomposition at a greatly reduced cost while preserving mode continuity using newly derived retractions. We show that arbitrarily high-order optimal perturbative retractions can be obtained, and we prove that these new retractions are stable. In addition, we demonstrate that repeatedly applying retractions yields a gradient-descent algorithm on the low-rank manifold that converges geometrically when approximating a low-rank matrix. When approximating a higher-rank matrix, iterations converge linearly to the best low-rank approximation. We then develop a rank-adaptive retraction that is robust to overapproximation. Building off of these retractions, we derive two novel, rank-adaptive integration schemes that dynamically update the subspace upon which the system dynamics is projected within each time-step: the stable, optimal Dynamically Orthogonal Runge-Kutta (so-DORK) and gradient-descent Dynamically Orthogonal Runge-Kutta (gd-DORK) schemes. These integration schemes are numerically evaluated and compared on an ill-conditioned matrix differential equation, an advection-diffusion partial differential equation, and a nonlinear, stochastic reaction-diffusion partial differential equation. Results show a reduced error accumulation rate with the new stable, optimal and gradient-descent integrators. In addition, we find that rank adaptation allows for highly accurate solutions while preserving computational efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset