Stable filtering procedures for nodal discontinuous Galerkin methods

07/14/2020
by   Jan Nordström, et al.
0

We prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order accurate Legendre-Gauss-Lobatto quadrature. The theoretical discussion serves to re-contextualize stable filtering results for finite difference methods into the DG setting. It is shown that the stability of the filtering is equivalent to a particular contractivity condition borrowed from the analysis of so-called transmission problems. As such, the temporal stability proof relies on the fact that the underlying spatial discretization of the problem possesses a semi-discrete bound on the solution. Numerical tests are provided to verify and validate the underlying theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset