Stability and Functional Superconvergence of Narrow-Stencil Second-Derivative Generalized Summation-By-Parts Discretizations

02/09/2021 ∙ by Zelalem Arega Worku, et al. ∙ 0

We analyze the stability and functional superconvergence of discretizations of diffusion problems with the narrow-stencil second-derivative generalized summation-by-parts (SBP) operators coupled with simultaneous approximation terms (SATs). Provided that the primal and adjoint solutions are sufficiently smooth and the SBP-SAT discretization is primal and adjoint consistent, we show that linear functionals associated with the steady diffusion problem superconverge at a rate of 2p when a degree p+1 narrow-stencil or a degree p wide-stencil generalized SBP operator is used for the spatial discretization. Sufficient conditions for stability of adjoint consistent discretizations with the narrow-stencil generalized SBP operators are presented. The stability analysis assumes nullspace consistency of the second-derivative operator and the invertibility of the matrix approximating the first derivative at the element boundaries. The theoretical results are verified by numerical experiments with the one-dimensional Poisson problem.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.