References
- [1] K.-J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. — Springer, 2000.
- [2] V.I.Bogachev, O.G.Smolyanov. Real and functional analysis (University course), 2nd edition. — Regular and chaotic dynamics, Izhevsk, 2011
- [3] Paul R. Chernoff, Note on product formulas for operator semigroups. // J. Funct. Anal. 2:2 (1968) 238-242.
- [4] I.D. Remizov. Quasi-Feynman formulas — a method of obtaining the evolution operator for the Schrödinger equation. // Journal of Functional Analysis 270:12 (2016) 4540-4557
- [5] Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov. Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian// TMF, 172:1 (2012), 122-137
-
[6]
I. D. Remizov. On estimation of error in approximations provided by Chernoff’s product formula// International Conference ”ShilnikovWorkshop-2018”, Lobachevsky State University of Nizhny Novgorod (Russia), book of abstracts, pp.38-41 (2018)
- [7] I.D. Remizov. Approximations to the solution of Cauchy problem for a linear evolution equation via the space shift operator (second-order equation example). // Applied Mathematics and Computaton 328 (2018), 243-246.
- [8] I.D. Remizov. Feynman and Quasi-Feynman Formulas for Evolution Equations. // Doklady Mathematics, 96:2 (2017), 433-437
- [9] I. D. Remizov, M. F. Starodubtseva. Quasi-Feynman Formulas providing Solutions of Multidimensional Schrödinger Equations with Unbounded Potential.// Math. Notes, 104:5 (2018), 767-772
- [10] A. A. Loboda. The Doss Method for the Stochastic Schrödinger-Belavkin Equation// Math. Notes, 106:2 (2019), 303-307