Speech Enhancement with Zero-Shot Model Selection
Recent research on speech enhancement (SE) has seen the emergence of deep learning-based methods. It is still a challenging task to determine effective ways to increase the generalizability of SE under diverse test conditions. In this paper, we combine zero-shot learning and ensemble learning to propose a zero-shot model selection (ZMOS) approach to increase the generalization of SE performance. The proposed approach is realized in two phases, namely offline and online phases. The offline phase clusters the entire set of training data into multiple subsets, and trains a specialized SE model (termed component SE model) with each subset. The online phase selects the most suitable component SE model to carry out enhancement. Two selection strategies are developed: selection based on quality score (QS) and selection based on quality embedding (QE). Both QS and QE are obtained by a Quality-Net, a non-intrusive quality assessment network. In the offline phase, the QS or QE of a train-ing utterance is used to group the training data into clusters. In the online phase, the QS or QE of the test utterance is used to identify the appropriate component SE model to perform enhancement on the test utterance. Experimental results have confirmed that the proposed ZMOS approach can achieve better performance in both seen and unseen noise types compared to the baseline systems, which indicates the effectiveness of the proposed approach to provide robust SE performance.
READ FULL TEXT