Speculative Parallel Evaluation Of Classification Trees On GPGPU Compute Engines

11/06/2011
by   Jason Spencer, et al.
0

We examine the problem of optimizing classification tree evaluation for on-line and real-time applications by using GPUs. Looking at trees with continuous attributes often used in image segmentation, we first put the existing algorithms for serial and data-parallel evaluation on solid footings. We then introduce a speculative parallel algorithm designed for single instruction, multiple data (SIMD) architectures commonly found in GPUs. A theoretical analysis shows how the run times of data and speculative decompositions compare assuming independent processors. To compare the algorithms in the SIMD environment, we implement both on a CUDA 2.0 architecture machine and compare timings to a serial CPU implementation. Various optimizations and their effects are discussed, and results are given for all algorithms. Our specific tests show a speculative algorithm improves run time by 25

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro