Spectral sparsification of matrix inputs as a preprocessing step for quantum algorithms

10/07/2019
by   Steven Herbert, et al.
0

We study the potential utility of classical techniques of spectral sparsification of graphs as a preprocessing step for digital quantum algorithms, in particular, for Hamiltonian simulation. Our results indicate that spectral sparsification of a graph with n nodes through a sampling method, e.g. as in <cit.> using effective resistances, gives, with high probability, a locally computable matrix H̃ with row sparsity at most O(polylog n). For a symmetric matrix H of size n with m non-zero entries, a one-time classical runtime overhead of O(m||H||tlog n/ϵ) expended in spectral sparsification is then found to be useful as a way to obtain a sparse matrix H̃ that can be used to approximate time evolution e^itH under the Hamiltonian H to precision ϵ. Once such a sparsifier is obtained, it could be used with a variety of quantum algorithms in the query model that make crucial use of row sparsity. We focus on the case of efficient quantum algorithms for sparse Hamiltonian simulation, since Hamiltonian simulation underlies, as a key subroutine, several quantum algorithms, including quantum phase estimation and recent ones for linear algebra. Finally, we also give two simple quantum algorithms to estimate the row sparsity of an input matrix, which achieve a query complexity of O(n^3/2) as opposed to O(n^2) that would be required by any classical algorithm for the task.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
03/10/2017

Direct Application of the Phase Estimation Algorithm to Find the Eigenvalues of the Hamiltonians

The eigenvalue of a Hamiltonian, H, can be estimated through the phase e...
research
09/30/2021

Improved quantum lower and upper bounds for matrix scaling

Matrix scaling is a simple to state, yet widely applicable linear-algebr...
research
04/18/2020

Effective gaps are not effective: quasipolynomial classical simulation of obstructed stoquastic Hamiltonians

All known examples confirming the possibility of an exponential separati...
research
03/18/2021

Faster quantum-inspired algorithms for solving linear systems

We establish an improved classical algorithm for solving linear systems ...
research
11/12/2020

Quantum algorithms for spectral sums

We propose and analyze new quantum algorithms for estimating the most co...
research
10/24/2022

Ranking nodes in directed networks via continuous-time quantum walks

Four new centrality measures for directed networks based on unitary, con...
research
05/30/2022

TimeEvolver: A Program for Time Evolution With Improved Error Bound

We present TimeEvolver, a program for computing time evolution in a gene...

Please sign up or login with your details

Forgot password? Click here to reset