Spectral Non-integer Derivative Representations and the Exact Spectral Derivative Discretization Finite Difference Method for the Fokker-Planck Equation

06/04/2021
by   D. P. Clemence-Mkhope, et al.
0

Universal difference quotient representations are introduced for the exact self-sameness principles (SSP) as rules for rates of change introduced in [Clemence-Mkhope, D.P (2021, Preprint). The Exact Spectral Derivative Discretization Finite Difference (ESDDFD) Method for Wave Models. arXiv]. Properties are presented for the fundamental rule, a generalized derivative representation which is shown to yield some known non-integer derivatives as limit cases of such natural derivative measures; this is shown for some local derivatives of conformable, fractional, or fractal type and non-local derivatives of Caputo and Riemann-Liouville type. The SSP-inspired exact spectral derivative discretization finite difference method is presented for the Fokker-Planck non-fractional and time-fractional equations; the resulting discrete models recover exactly some known behaviors predicted for the processes modeled, such as the Gibbs-Boltzmann distribution and the Einstein-Stokes-Smoluchowski relation; new ones are predicted.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro