Spectral deconvolution of unitarily invariant matrix models

06/16/2020
by   Pierre Tarrago, et al.
0

The present paper implements a complex analytic method to recover the spectrum of a matrix perturbed by either the addition or the multiplication of a random matrix noise, under the assumption that the distribution of the noise is unitarily invariant. This method, introduced by Arizmendi, Tarrago and Vargas in arXiv:1711.08871, is done in two steps : the first step consists in a fixed point method to compute the Stieltjes transform of the desired distribution in a certain domain, and the second step is a classical deconvolution by a Cauchy distribution, whose parameter depends on the intensity of the noise. We also provide explicit bounds for the mean squared error of the first step.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset