Spectral Convergence Rate of Graph Laplacian

10/27/2015
by   Xu Wang, et al.
0

Laplacian Eigenvectors of the graph constructed from a data set are used in many spectral manifold learning algorithms such as diffusion maps and spectral clustering. Given a graph constructed from a random sample of a d-dimensional compact submanifold M in R^D, we establish the spectral convergence rate of the graph Laplacian. It implies the consistency of the spectral clustering algorithm via a standard perturbation argument. A simple numerical study indicates the necessity of a denoising step before applying spectral algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro