Specificity-Based Sentence Ordering for Multi-Document Extractive Risk Summarization

09/23/2019
by   Berk Ekmekci, et al.
0

Risk mining technologies seek to find relevant textual extractions that capture entity-risk relationships. However, when high volume data sets are processed, a multitude of relevant extractions can be returned, shifting the focus to how best to present the results. We provide the details of a risk mining multi-document extractive summarization system that produces high quality output by modeling shifts in specificity that are characteristic of well-formed discourses. In particular, we propose a novel selection algorithm that alternates between extracts based on human curated or expanded autoencoded key terms, which exhibit greater specificity or generality as it relates to an entity-risk relationship. Through this extract ordering, and without the need for more complex discourse-aware NLP, we induce felicitous shifts in specificity in the alternating summaries that outperform non-alternating summaries on automatic ROUGE and BLEU scores, and manual understandability and preferences evaluations - achieving no statistically significant difference when compared to human authored summaries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset