Spatiotemporal Prediction of Ambulance Demand using Gaussian Process Regression

06/28/2018
by   Seth Nabarro, et al.
0

Accurately predicting when and where ambulance call-outs occur can reduce response times and ensure the patient receives urgent care sooner. Here we present a novel method for ambulance demand prediction using Gaussian process regression (GPR) in time and geographic space. The method exhibits superior accuracy to MEDIC, a method which has been used in industry. The use of GPR has additional benefits such as the quantification of uncertainty with each prediction, the choice of kernel functions to encode prior knowledge and the ability to capture spatial correlation. Measures to increase the utility of GPR in the current context, with large training sets and a Poisson-distributed output, are outlined.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset