Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction

12/31/2022
by   Jie Feng, et al.
0

Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5   7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.

READ FULL TEXT

page 4

page 6

page 7

page 8

research
10/19/2022

A scan-specific unsupervised method for parallel MRI reconstruction via implicit neural representation

Parallel imaging is a widely-used technique to accelerate magnetic reson...
research
09/12/2023

Batch Implicit Neural Representation for MRI Parallel Reconstruction

Magnetic resonance imaging (MRI) always suffered from the problem of lon...
research
10/03/2019

Time-Dependent Deep Image Prior for Dynamic MRI

We propose a novel unsupervised deep-learning-based algorithm to solve t...
research
02/08/2020

Free-breathing Cardiovascular MRI Using a Plug-and-Play Method with Learned Denoiser

Cardiac magnetic resonance imaging (CMR) is a noninvasive imaging modali...
research
06/14/2022

K-Space Transformer for Fast MRI Reconstruction with Implicit Representation

This paper considers the problem of fast MRI reconstruction. We propose ...
research
08/05/2023

K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets

Although deep learning (DL) methods are powerful for solving inverse pro...
research
08/21/2023

DOMINO++: Domain-aware Loss Regularization for Deep Learning Generalizability

Out-of-distribution (OOD) generalization poses a serious challenge for m...

Please sign up or login with your details

Forgot password? Click here to reset