Sparse Synthetic Controls

03/22/2022
by   Jaume Vives-i-Bastida, et al.
0

This paper introduces a new penalized synthetic control method for policy evaluation. The proposed sparse synthetic control penalizes the number of predictors used in generating the counterfactual to improve pre-treatment fit and select the most important predictors. To motivate the method theoretically I derive, in a linear factor model framework, a model selection consistency result and a mean squared error convergence rate result. Through a simulation study, I then show that the sparse synthetic control achieves lower bias and has better post-treatment fit than the unpenalized synthetic control. Finally, I apply the method to study the effects of the passage of Proposition 99 in California in a setting with a large number of predictors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro