Sparse PointPillars: Exploiting Sparsity in Birds-Eye-View Object Detection

06/12/2021
by   Kyle Vedder, et al.
0

Bird's Eye View (BEV) is a popular representation for processing 3D point clouds, and by its nature is fundamentally sparse. Motivated by the computational limitations of mobile robot platforms, we take a fast high-performance BEV 3D object detector - PointPillars - and modify its backbone to exploit this sparsity, leading to decreased runtimes. We present preliminary results demonstrating decreased runtimes with either the same performance or a modest decrease in performance, which we anticipate will be remedied by model specific hyperparameter tuning. Our work is a first step towards a new class of 3D object detectors that exploit sparsity throughout their entire pipeline in order to reduce runtime and resource usage while maintaining good detection performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset