Sparse Linear Dynamical System with Its Application in Multivariate Clinical Time Series

11/27/2013
by   Zitao Liu, et al.
0

Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning multivariate time series. However, in general, it is difficult to set the dimension of its hidden state space. A small number of hidden states may not be able to model the complexities of a time series, while a large number of hidden states can lead to overfitting. In this paper, we study methods that impose an ℓ_1 regularization on the transition matrix of an LDS model to alleviate the problem of choosing the optimal number of hidden states. We incorporate a generalized gradient descent method into the Maximum a Posteriori (MAP) framework and use Expectation Maximization (EM) to iteratively achieve sparsity on the transition matrix of an LDS model. We show that our Sparse Linear Dynamical System (SLDS) improves the predictive performance when compared to ordinary LDS on a multivariate clinical time series dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset