Sparse Bayesian Learning Using Approximate Message Passing with Unitary Transformation

08/17/2019
by   Man Luo, et al.
0

Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it is vulnerable to `difficult' measurement matrices as AMP can easily diverge. Damped AMP has been used to alleviate the problem at the cost of slowing the convergence speed. In this work, we propose an SBL algorithm based on the AMP with unitary transformation (UTAMP), where the shape parameter of the hyperprior is tuned automatically. It is shown that, compared to the state-of-the-art AMP based SBL algorithm, the proposed UTAMP-SBL is much more robust and much faster, leading to remarkably better performance. It is shown that in many cases, UTAMP-SBL can approach the support-oracle bound closely.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset