Space-time Trade-offs for the LCP Array of Wheeler DFAs

by   Nicola Cotumaccio, et al.

Recently, Conte et al. generalized the longest-common prefix (LCP) array from strings to Wheeler DFAs, and they showed that it can be used to efficiently determine matching statistics on a Wheeler DFA [DCC 2023]. However, storing the LCP array requires O(n log n) bits, n being the number of states, while the compact representation of Wheeler DFAs often requires much less space. In particular, the BOSS representation of a de Bruijn graph only requires a linear number of bits, if the size of alphabet is constant. In this paper, we propose a sampling technique that allows to access an entry of the LCP array in logarithmic time by only storing a linear number of bits. We use our technique to provide a space-time trade-off to compute matching statistics on a Wheeler DFA. In addition, we show that by augmenting the BOSS representation of a k-th order de Bruijn graph with a linear number of bits we can navigate the underlying variable-order de Bruijn graph in time logarithmic in k, thus improving a previous bound by Boucher et al. which was linear in k [DCC 2015].


page 1

page 2

page 3

page 4


Load-Balancing Succinct B Trees

We propose a B tree representation storing n keys, each of k bits, in ei...

Optimal resizable arrays

A resizable array is an array that can grow and shrink by the addition o...

Assembling Omnitigs using Hidden-Order de Bruijn Graphs

De novo DNA assembly is a fundamental task in Bioinformatics, and findin...

Cache-Oblivious Representation of B-Tree Structures

We present a data structure CORoBTS for storing a search tree with all l...

The effective entropy of next/previous larger/smaller value queries

We study the problem of storing the minimum number of bits required to a...

Space-Efficient Computation of the LCP Array from the Burrows-Wheeler Transform

We show that the Longest Common Prefix Array of a text collection of tot...

Cantor-solus and Cantor-multus Distributions

The Cantor distribution is obtained from bitstrings; the Cantor-solus di...

Please sign up or login with your details

Forgot password? Click here to reset