Space-time Non-local multi-continua upscaling for parabolic equations with moving channelized media

06/22/2021 ∙ by Jiuhua Hu, et al. ∙ 0

In this paper, we consider a parabolic problem with time-dependent heterogeneous coefficients. Many applied problems have coupled space and time heterogeneities. Their homogenization or upscaling requires cell problems that are formulated in space-time representative volumes for problems with scale separation. In problems without scale separation, local problems include multiple macroscopic variables and oversampled local problems, where these macroscopic parameters are computed. These approaches, called Non-local multi-continua, are proposed for problems with complex spatial heterogeneities in a number of previous papers. In this paper, we extend this approach for space-time heterogeneities, by identifying macroscopic parameters in space-time regions. Our proposed method space-time Non-local multi-continua (space-time NLMC) is an efficient numerical solver to deal with time-dependent heterogeneous coefficients. It provides a flexible and systematic way to construct multiscale basis functions to approximate the solution. These multiscale basis functions are constructed by solving a local energy minimization problems in the oversampled space-time regions such that these multiscale basis functions decay exponentially outside the oversampled domain. Unlike the classical time-stepping methods combined with full-discretization technique, our space-time NLMC efficiently constructs the multiscale basis functions in a space-time domain and can provide a computational savings compared to space-only approaches as we discuss in the paper. We present two numerical experiments, which show that the proposed approach can provide a good accuracy.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 18

page 19

page 20

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.