SOME/IP Intrusion Detection using Deep Learning-based Sequential Models in Automotive Ethernet Networks

08/04/2021
by   Natasha Alkhatib, et al.
0

Intrusion Detection Systems are widely used to detect cyberattacks, especially on protocols vulnerable to hacking attacks such as SOME/IP. In this paper, we present a deep learning-based sequential model for offline intrusion detection on SOME/IP application layer protocol. To assess our intrusion detection system, we have generated and labeled a dataset with several classes representing realistic intrusions, and a normal class - a significant contribution due to the absence of such publicly available datasets. Furthermore, we also propose a simple recurrent neural network (RNN), as an instance of deep learning-based sequential model, that we apply to our generated dataset. The numerical results show that RNN excel at predicting in-vehicle intrusions, with F1 Scores and AUC values of 0.99 for each type of intrusion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset