Some Computational Aspects to Find Accurate Estimates for the Parameters of the Generalized Gamma distribution

07/25/2017
by   Jorge Alberto Achcar, et al.
0

In this paper, we discuss computational aspects to obtain accurate inferences for the parameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem remains, but now related to the choice of prior distributions for the parameters of this model. We presented some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets in the presence of censorship.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset