Solving Trust Region Subproblems Using Riemannian Optimization

10/15/2020
by   Uria Mor, et al.
0

The Trust Region Subproblem is a fundamental optimization problem that takes a pivotal role in Trust Region Methods. However, the problem, and variants of it, also arise in quite a few other applications. In this article, we present a family of globally convergent iterative Riemannian optimization algorithms for a variant of the Trust Region Subproblem that replaces the inequality constraint with an equality constraint. Our approach uses either a trivial or a non-trivial Riemannian geometry of the search-space, and requires only minimal spectral information about the quadratic component of the objective function. We further show how the theory of Riemannian optimization promotes a deeper understanding of the Trust Region Subproblem and its difficulties, e.g. a deep connection between the Trust Region Subproblem and the problem of finding affine eigenvectors, and a new examination of the so-called hard case in light of the condition number of the Riemannian Hessian operator at a global optimum. Finally, we propose to incorporate preconditioning via a careful selection of a variable Riemannian metric, and establish bounds on the asymptotic convergence rate in terms of how well the preconditioner approximates the input matrix.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset