Solving Laplace problems with corner singularities via rational functions

05/08/2019
by   Abinand Gopal, et al.
0

A new method is introduced for solving Laplace problems on 2D regions with corners by approximation of boundary data by the real part of a rational function with fixed poles exponentially clustered near each corner. Greatly extending a result of D. J. Newman in 1964 in approximation theory, we first prove that such approximations can achieve root-exponential convergence for a wide range of problems, all the way up to the corner singularities. We then develop a numerical method to compute approximations via linear least-squares fitting on the boundary. Typical problems are solved in < 1s on a laptop to 8-digit accuracy, with the accuracy guaranteed in the interior by the maximum principle. The computed solution is represented globally by a single formula, which can be evaluated in tens of microseconds at each point.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro