Solution of planar elastic stress problems using stress basis functions

04/26/2023
by   Sankalp Tiwari, et al.
0

The use of global displacement basis functions to solve boundary-value problems in linear elasticity is well established. No prior work uses a global stress tensor basis for such solutions. We present two such methods for solving stress problems in linear elasticity. In both methods, we split the sought stress σ into two parts, where neither part is required to satisfy strain compatibility. The first part, σ_p, is any stress in equilibrium with the loading. The second part, σ_h, is a self-equilibrated stress field on the unloaded body. In both methods, σ_h is expanded using tensor-valued global stress basis functions developed elsewhere. In the first method, the coefficients in the expansion are found by minimizing the strain energy based on the well-known complementary energy principle. For the second method, which is restricted to planar homogeneous isotropic bodies, we show that we merely need to minimize the squared L^2 norm of the trace of stress. For demonstration, we solve eight stress problems involving sharp corners, multiple-connectedness, non-zero net force and/or moment on an internal hole, body force, discontinuous surface traction, material inhomogeneity, and anisotropy. The first method presents a new application of a known principle. The second method presents a hitherto unreported principle, to the best of our knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro