SolcTrans: Towards machine translation of Solidity smart contract source code

06/11/2021 ∙ by Chaochen Shi, et al. ∙ 0

Context: Decentralized applications on blockchain platforms are realized through smart contracts. However, participants who lack programming knowledge often have difficulties reading the smart contract source codes, which leads to potential security risks and barriers to participation. Objective: Our objective is to translate the smart contract source codes into natural language descriptions to help people better understand, operate, and learn smart contracts. Method: This paper proposes an automated translation tool for Solidity smart contracts, termed SolcTrans, based on an abstract syntax tree and formal grammar. We have investigated 3,000 smart contracts and determined the part of speeches of corresponding blockchain terms. Among them, we further filtered out contract snippets without detailed comments and left 811 snippets to evaluate the translation quality of SolcTrans. Results: Experimental results show that even with a small corpus, SolcTrans can achieve similar performance to the state-of-the-art code comments generation models for other programming languages. In addition, SolcTrans has consistent performance when dealing with code snippets with different lengths and gas consumption. Conclusion: SolcTrans can correctly interpret Solidity codes and automatically convert them into comprehensible English text. We will release our tool and dataset for supporting reproduction and further studies in related fields.



There are no comments yet.


page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.