Solar cell patent classification method based on keyword extraction and deep neural network
With the growing impact of ESG on businesses, research related to renewable energy is receiving great attention. Solar cells are one of them, and accordingly, it can be said that the research value of solar cell patent analysis is very high. Patent documents have high research value. Being able to accurately analyze and classify patent documents can reveal several important technical relationships. It can also describe the business trends in that technology. And when it comes to investment, new industrial solutions will also be inspired and proposed to make important decisions. Therefore, we must carefully analyze patent documents and utilize the value of patents. To solve the solar cell patent classification problem, we propose a keyword extraction method and a deep neural network-based solar cell patent classification method. First, solar cell patents are analyzed for pretreatment. It then uses the KeyBERT algorithm to extract keywords and key phrases from the patent abstract to construct a lexical dictionary. We then build a solar cell patent classification model according to the deep neural network. Finally, we use a deep neural network-based solar cell patent classification model to classify power patents, and the training accuracy is greater than 95 validation accuracy is about 87.5 method can not only realize the classification of complex and difficult solar cell patents, but also have a good classification effect.
READ FULL TEXT