Software Simulation and Visualization of Quantum Multi-Drone Reinforcement Learning

11/24/2022
by   Chanyoung Park, et al.
0

Quantum machine learning (QML) has received a lot of attention according to its light training parameter numbers and speeds; and the advances of QML lead to active research on quantum multi-agent reinforcement learning (QMARL). Existing classical multi-agent reinforcement learning (MARL) features non-stationarity and uncertain properties. Therefore, this paper presents a simulation software framework for novel QMARL to control autonomous multi-drones, i.e., quantum multi-drone reinforcement learning. Our proposed framework accomplishes reasonable reward convergence and service quality performance with fewer trainable parameters. Furthermore, it shows more stable training results. Lastly, our proposed software allows us to analyze the training process and results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset