Soft-IntroVAE: Analyzing and Improving the Introspective Variational Autoencoder

12/24/2020 ∙ by Tal Daniel, et al. ∙ 15

The recently introduced introspective variational autoencoder (IntroVAE) exhibits outstanding image generations, and allows for amortized inference using an image encoder. The main idea in IntroVAE is to train a VAE adversarially, using the VAE encoder to discriminate between generated and real data samples. However, the original IntroVAE loss function relied on a particular hinge-loss formulation that is very hard to stabilize in practice, and its theoretical convergence analysis ignored important terms in the loss. In this work, we take a step towards better understanding of the IntroVAE model, its practical implementation, and its applications. We propose the Soft-IntroVAE, a modified IntroVAE that replaces the hinge-loss terms with a smooth exponential loss on generated samples. This change significantly improves training stability, and also enables theoretical analysis of the complete algorithm. Interestingly, we show that the IntroVAE converges to a distribution that minimizes a sum of KL distance from the data distribution and an entropy term. We discuss the implications of this result, and demonstrate that it induces competitive image generation and reconstruction. Finally, we describe two applications of Soft-IntroVAE to unsupervised image translation and out-of-distribution detection, and demonstrate compelling results. Code and additional information is available on the project website – https://taldatech.github.io/soft-intro-vae-web

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 18

page 19

page 20

page 22

page 23

page 24

page 25

Code Repositories

soft-intro-vae-pytorch

[CVPR 2021 Oral] Official PyTorch implementation of Soft-IntroVAE from the paper "Soft-IntroVAE: Analyzing and Improving Introspective Variational Autoencoders"


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.