Soft Biometric Privacy: Retaining Biometric Utility of Face Images while Perturbing Gender
While the primary purpose for collecting biometric data (such as face images, iris, fingerprints, etc.) is for person recognition, yet recent advances in machine learning has shown the possibility of extracting auxiliary information from biometric data such as age, gender, health attributes, etc. These auxiliary attributes are sometimes referred to as soft biometrics. This automatic extraction of soft biometric attributes can happen without the user's agreement, thereby raising several privacy concerns. In this work, we design a technique that modifies a face image such that its gender as assessed by a gender classifier is perturbed, while its biometric utility as assessed by a face matcher is retained. Given an arbitrary biometric matcher and an attribute classifier, the proposed method systematically perturbs the input image such that the output of the attribute classifier is confounded, while the output of the biometric matcher is not significantly impacted. Experimental analysis convey the efficacy of the scheme in imparting gender privacy to face images.
READ FULL TEXT