DeepAI AI Chat
Log In Sign Up

Social Media Unrest Prediction during the COVID-19 Pandemic: Neural Implicit Motive Pattern Recognition as Psychometric Signs of Severe Crises

by   Dirk Johannßen, et al.

The COVID-19 pandemic has caused international social tension and unrest. Besides the crisis itself, there are growing signs of rising conflict potential of societies around the world. Indicators of global mood changes are hard to detect and direct questionnaires suffer from social desirability biases. However, so-called implicit methods can reveal humans intrinsic desires from e.g. social media texts. We present psychologically validated social unrest predictors and replicate scalable and automated predictions, setting a new state of the art on a recent German shared task dataset. We employ this model to investigate a change of language towards social unrest during the COVID-19 pandemic by comparing established psychological predictors on samples of tweets from spring 2019 with spring 2020. The results show a significant increase of the conflict indicating psychometrics. With this work, we demonstrate the applicability of automated NLP-based approaches to quantitative psychological research.


page 1

page 2

page 3

page 4


COVID-19 UK Social Media Dataset for Public Health Research: Methodology for Collection and Processing

We present a benchmark database of public social media postings from the...

Case Study on Detecting COVID-19 Health-Related Misinformation in Social Media

COVID-19 pandemic has generated what public health officials called an i...

The Role Of Social Media On Selected Businesses In Nigeria In The Era Of Covid-19 Pandemic

As several countries were experiencing unprecedented economic slowdowns ...

Empathy and Hope: Resource Transfer to Model Inter-country Social Media Dynamics

The ongoing COVID-19 pandemic resulted in significant ramifications for ...

Image-based Social Sensing: Combining AI and the Crowd to Mine Policy-Adherence Indicators from Twitter

Social Media provides a trove of information that, if aggregated and ana...