SMURF: Self-Teaching Multi-Frame Unsupervised RAFT with Full-Image Warping

05/14/2021
by   Austin Stone, et al.
15

We present SMURF, a method for unsupervised learning of optical flow that improves state of the art on all benchmarks by 36% to 40% (over the prior best method UFlow) and even outperforms several supervised approaches such as PWC-Net and FlowNet2. Our method integrates architecture improvements from supervised optical flow, i.e. the RAFT model, with new ideas for unsupervised learning that include a sequence-aware self-supervision loss, a technique for handling out-of-frame motion, and an approach for learning effectively from multi-frame video data while still only requiring two frames for inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset