SMTCE: A Social Media Text Classification Evaluation Benchmark and BERTology Models for Vietnamese

09/21/2022
by   Luan Thanh Nguyen, et al.
0

Text classification is a typical natural language processing or computational linguistics task with various interesting applications. As the number of users on social media platforms increases, data acceleration promotes emerging studies on Social Media Text Classification (SMTC) or social media text mining on these valuable resources. In contrast to English, Vietnamese, one of the low-resource languages, is still not concentrated on and exploited thoroughly. Inspired by the success of the GLUE, we introduce the Social Media Text Classification Evaluation (SMTCE) benchmark, as a collection of datasets and models across a diverse set of SMTC tasks. With the proposed benchmark, we implement and analyze the effectiveness of a variety of multilingual BERT-based models (mBERT, XLM-R, and DistilmBERT) and monolingual BERT-based models (PhoBERT, viBERT, vELECTRA, and viBERT4news) for tasks in the SMTCE benchmark. Monolingual models outperform multilingual models and achieve state-of-the-art results on all text classification tasks. It provides an objective assessment of multilingual and monolingual BERT-based models on the benchmark, which will benefit future studies about BERTology in the Vietnamese language.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset