SMT-based Robot Transition Repair

01/09/2020
by   Jarrett Holtz, et al.
0

State machines are a common model for robot behaviors. Transition functions often rely on parameterized conditions to model preconditions for the controllers, where the correct values of the parameters depend on factors relating to the environment or the specific robot. In the absence of specific calibration procedures a roboticist must painstakingly adjust the parameters through a series of trial and error experiments. In this process, identifying when the robot has taken an incorrect action, and what should be done is straightforward, but finding the right parameter values can be difficult. We present an alternative approach that we call, interactive SMT-based Robot Transition Repair. During execution we record an execution trace of the transition function, and we ask the roboticist to identify a few instances where the robot has transitioned incorrectly, and what the correct transition should have been. A user supplies these corrections based on the type of error to repair, and an automated analysis of the traces partially evaluates the transition function for each correction. This system of constraints is then formulated as a MaxSMT problem, where the solution is a minimal adjustment to the parameters that satisfies the maximum number of constraints. In order to identify a repair that accurately captures user intentions and generalizes to novel scenarios, solutions are explored by iteratively adding constraints to the MaxSMT problem to yield sets of alternative repairs. We test with state machines from multiple domains including robot soccer and autonomous driving, and we evaluate solver based repair with respect to solver choice and optimization hyperparameters. Our results demonstrate that SRTR can repair a variety of states machines and error types 1) quickly, 2) with small numbers of corrections, while 3) not overcorrecting state machines and harming generalized performance.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 8

page 22

page 23

page 24

page 25

02/05/2018

Interactive Robot Transition Repair With SMT

Complex robot behaviors are often structured as state machines, where st...
12/03/2020

Graph Repair and its Application to Meta-Modeling

Model repair is an essential topic in model-driven engineering. We prese...
05/13/2021

Counterexample-Guided Repair for Symbolic-Geometric Action Abstractions

Integrated Task and Motion Planning (TMP) provides a promising class of ...
01/10/2021

Towards Repairing Scenario-Based Models with Rich Events

Repairing legacy systems is a difficult and error-prone task: often, lim...
01/19/2021

Program Repair for Hyperproperties

We study the repair problem for hyperproperties specified in the tempora...
08/10/2020

Robot Action Selection Learning via Layered Dimension Informed Program Synthesis

Action selection policies (ASPs), used to compose low-level robot skills...
11/18/2015

Solution Repair/Recovery in Uncertain Optimization Environment

Operation management problems (such as Production Planning and Schedulin...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.